skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Elliott, Michael J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we develop a method for extracting information from Large Language Models (LLMs) with associated confidence estimates. We propose that effective confidence models may be designed using a large number of uncertainty measures (i.e., variables that are only weakly predictive of - but positively correlated with - information correctness) as inputs. We trained a confidence model that uses 20 handcrafted uncertainty measures to predict GPT-4’s ability to reproduce species occurrence data from iDigBio and found that, if we only consider occurrence claims that are placed in the top 30% of confidence estimates, we can increase prediction accuracy from 57% to 88% for species absence predictions and from 77% to 86% for species presence predictions. Using the same confidence model, we used GPT- 4 to extract new data that extrapolates beyond the occurrence records in iDigBio and used the results to visualize geographic distributions for four individual species. More generally, this represents a novel use case for LLMs in generating credible pseudo data for applications in which high-quality curated data are unavailable or inaccessible. 
    more » « less
  2. Abstract Commonly used data citation practices rely on unverifiable retrieval methods which are susceptible to content drift, which occurs when the data associated with an identifier have been allowed to change. Based on our earlier work on reliable dataset identifiers, we propose signed citations, i.e., customary data citations extended to also include a standards-based, verifiable, unique, and fixed-length digital content signature. We show that content signatures enable independent verification of the cited content and can improve the persistence of the citation. Because content signatures are location- and storage-medium-agnostic, cited data can be copied to new locations to ensure their persistence across current and future storage media and data networks. As a result, content signatures can be leveraged to help scalably store, locate, access, and independently verify content across new and existing data infrastructures. Content signatures can also be embedded inside content to create robust, distributed knowledge graphs that can be cited using a single signed citation. We describe applications of signed citations to solve real-world data collection, identification, and citation challenges. 
    more » « less